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COMPUTATION OF POTENTIAL FLOWS WITH EMBEDDED VORTEX RINGS
AND APPLICATIONS TO HELICOPTER ROTOR WAKES

by
Thomas W. Roberts

ABSTRACT

A finite difference scheme for solving the motion of a
number of vortex rings is developed. The method 1is an
adaptation of the "cloud-in-cell" technique to axisymmetric
flows, and is thus a combined Eulerian-Lagrangian technique.
A straightforward adaptation of the "cloud-inh=-cell" scheme
to an axisymmetric flow field is shown to introduce a grid
dependent self-induced velocity to each vortex ring., To
correct this behavior the potential is considered to consist
of two parts, a local and a global field. An improved
difference formula is derived, allowing the accuraté calcu-
lation of the potential at points near vortex locations.
The local potential 1is then subtracted before caléulating
the velocity, leaving only the influences of the remaining
vortices. The correct self-induced velocity is then explic-
itly added to the vortex velocity.

Calculations of the motion of oie and two vortex rings are

"performed, demonstrating the ability of the new method to

eliminate the grid dependence of the self-induced velocity.
The application of the method to the calculation of helicop-
ter rotor flows in hover is attemptead. While the wake
geometries converged when only a few vortices were used to

represent the wake, the introduction of many vortices

resulted in fzilure to converge. It is thought that the
non-convergence may be due to a physical instability
suggested by experimental results. However, the representa-
tion of a distributed vorticity by discrete filaments is
also a possible cause of the difficulty.
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NOMEMCLATURE

vortex core radius
T thrust coefficient
fluid flux (see equations 19)

approximate fluid flux (see equations 12)

Z ™ m O v

number ¢f vortex markers

r radial coordinate

R rotor radius or reference length

£ provisional radial coordinate (see equations 16,29)
t ‘time

u radial velocity

W axial velocity

z axial coordinate -

z provisional axial coordinate (see equations 16,29)
r ~ ¢circulation

LY. jump in @ across branch cut

Ar g;id spacing in radial direction

At ' grid spacing in time

az grid spacing in axial direction

ay grid spacing in aximuthal direction

) angular coordinate attached to vortex

A inflow ratio, w/AR

e radial coordinate attached to vortex

¢ velocity potential

/] azimuthal angle

A

relaxation parameter
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n rotor rotational speed i
v gradient operator !
.
v axisymmetric Laplace operator oo
S . . L . . P!
v axisymmetric finite-difference Laplace operator . :
subscripts ;
}
i index denoting vortex marker
3 index denoting radial coordinate ‘
k  index denoting axial coordinate i
ref reference value f
3 far far wake value ;
: , P
] cyl vortex cylinder value o
? !
:~; E
‘ . 0
E superscripts =
: »
: £ local values removed §~!
2 1 local values -
i o
% n index denoting time or iteration level , oo
" + value just above branch cut i
; - value just below branch cut :
: * non-dimensional quantity
e,
‘
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4
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CHAPTER 1. INTRODUCTION
1.1 Importance of Vortex Flows

Most flows of aerodynamic interest contain regions of
vorticity. The generation of lift by circulatory flows
implies the creaticn of vorticity in the form of thin wakes.
In many cases--for example, the flow around an isolated,
moderately swept wing at a small angle-of-attack--the
vorticity can be assumed to lie in a planar vortex sheet
behind the wing. The deformation of this sheet downstream
cf the wing has only a higher order effect on the lift of
the wing. The neglect of the roll-up of the sheet is
computationally simpler and has no appreciable effect on the
calculated aerodynamic forces.

However, many flows contain vortex sheets that interact
strongly with the 1lifting surfaces. The evolution and
position of these sheets must be properly accounted for if
one is to accurately determine the aerodynamic forces.
Examples of such flows are: close-coupled canardfwing
combinations; strake-wing combinations at} high
angles-of-attack; slender wings with 1leading edge vortex
sheets; and rotary wing aircraft in which the vortex wake
remains close to the rotor blade plane. Only 1if the
position of the vortex sheets is correctly predicted can the
aerodynamic characteristics of these configurations»bé cal-

culated with confidence. The ability to calculate these
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flows, which are highly nonlinear, is a major challenge in
computational £fluid dynamics,

1f it were possible to solve the full Navier-Stokes
equations, no special modeling would be necessary for these
vortex dominated flows., However, solution of the
Navier-Stokes equations for general configurations is not
feasible presently, and simplified models of these vortex
flows are required. Consideragle simplification results by

noting that the vorticity in these flows is concentrated in

~ limited regions of the fluid, typically thin wakes, Also,

viscous effects are generally negligible, and the fluid may
be treated as inviscid. Under these conditions. it is
possible to make use of Helmholtz's vortex theorems, by
which it is known that vortex lines are materiazl lines of
the fluid and are convected with the local fluid velocity.
The vorticity can be represented as a finite number of
vortex filaments of given circulation, moving under their
mutual influence. This is the basis of vortex methods, and

these methods are reviewed below.
1.2 Relevant Previous Research

A recent review of vortex methods 1is given by Leonard
(1980). The fundamental aspects of vortex methods are the
representation of the vorticity as a finite number of

discrete vortex filaments, and the tracking of the motion of

these filaments under their mutual influence. Vortex meth-
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ods are thus Lagrangian, rather than Eulerian, flow simula-
tions,

The earliest attempt to calculate the roll-up of the
vortex sheet behind an elliptically loaded wing by discrete
vortex methods was done by Westwater (1935). He solved the
problem of the unsteady, two~dimensional rcll-ﬁp c¢f the
sheet in the Trefftz plane. Subsequent attempts (Moore
1971, Clements & Maull 1973, Fink & Soh 1974) tojrepeap

these calculatzons have met with varying degrees of success.

t
Typically, the motion of the vortices becomes chaotgc near
the edge of the sheet, and some sort of ad hoc proceéure is
required to smooth the behavior of the sheet. This qually
takes the form of introducing a rotational core éo each
filament, thus eliminating the velocity singdlarity, or
redistributing the vorticity at each time step. Also, some
serious questions as to the validity of representing a
continuous sheet as a finite collection of point vortices
have beea raised. (For a discussion of these queétions, see
the review article by Saffman & Baker, 1979.)

Calculations wusing discrete filaments are typically
done by using' the Biot-Savart law to calculate the
vortex-to-vortex interactions. This reguires O(Nf) opera-
tions per time step, where N is the number of vortices. If
a large number of vortices are used in the simulation a
great deal of cpu is required to calculate their motions,

thereby restricting the number of vortices representing the

4 Zm e n Ak e, e w . Teld

CRONCEBOGINCT L T L T

e e

IESRITTIR e ey




. Chaii R e e
R!‘h :
?

;
5
r
|

i

B ath i A S 1 Eoiid L o

S T TR g W T

e

.

Bt !r‘-.{w:wmv@wjm(ry b SRS

L
"
3
-

L]

10

flow in practical cases, Recently, Spalart & Leonard (1981)
have presented a vortex tracing scheme which requires O(N")
operations per time step. The method considers groups of
vortices and computes long-ran<e interactions on a
group-to-group basis. Short-range interactions are computed
on a vortex-to-vortex basis, using the Biot-Savart law.

Christiansen (1973) and Baker (1979) have introduced
the "cloud-in-cell" technique of plasma simulations to the
calculation of vortex flows, In this approach, the
velocities of the vortices are calculated by solving for the
streamfunction on an Eulerian finite-difference grid. The
velocities are then interpolated to the vortex positions,
and the vortices are tracked in a Lagrangian reference
frame. Using a fast Poisson solver for the streamfunction,
these calculations require O(M logaM) operations per time
step, where' M is the number of grid points, The grid
introduces fine scale structures on the flow, which are
amalgamated into larger structures, independent of the grid.
Large numbers of vortices can be efficiently represented by
this approach.

This approach was modified by Stremel (1982) and Murman
& Stremel (1982) who solved for the velocities using the
velocity potential rather than the streamfunction. Stremel
used this aproach to calculate the flow behind a convention-
al wing and flapped wing.

The application of vortex methods to the calculation of

4 Ee w4 e s o #aes . _
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helicopter rotor wakes is a problem of great practical
importance and difficulty. The wake geometry, or
distribution of wvorticity, strongly affects the 1lift
distribution of the blade;. Calculations of helicopter
rotor wakes in hover can be classified into prescribed wake
analyses or free wake analyses. Methods of the first type
are described by Landgrebe (1971, 1972)' and consist of
specifying the geometry of the trailing vortex filaments
below the blade. The geometry specified is either a
classical  wake (Goldstein-Lock) or an experimentally
observed wake. Although an exparimentally prescribed wake
analysis gives more accurate blade loadings than the c%assi-
cai wake, the large degree of empiricism is undesi%ableﬁ
Furthermore, the accuracy of the predicted loadinés for
untested configurations must neceséarily be viewed with a
degree of suspicion when a prescribed wake analysis is used.

Free wake analysis places no restrictions on the
gecmetry of the vortex wakes. Rather, the force-frge vortex
positions in the wake are found iteratively from an assumed
‘initiél configuration. The free wake analysis was

introduced by Clark & Leiper (1970). Although this approach

"is far more general than the prescribed wake analysis, the

computational reguirements are much greater.
Currently,. the work of Miller (1981, 1982, 1983) is
aimed at providing a simplified free wake model., Miller's

analysis assumes the trailing vorticity attached to the
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blade, which he calls the near wake, may be represented as
straight, semi-infinite wvortex filaments. From the calcu-
lated blade loading, he allows the trailing vorticity to
roll-up according to the Betz criteria (Donaldson, et. al.
1974) into two or three distinct vortices: a tip vortex, a
center vortex, énd a root vortex (the last 1is usually
neglected). These vortices make-up the intermediate wake,
As a further simplification, Miller replaces the helical
filaments of the intermediate wake with either vortex rings
(the three dimensional model) or doubly-infinite vortex
lines (the two dimensional model). The force-fres positions
of these vortices are found by iterating from an assumed
initial configuration determined from rotor momentum theory.
From the converged positions, the new loading on the rotor
blades is determined, Using this load distribution, the new
wake geometry is determined and the loading recalculated.
This iteration between the wake geometry and blade lift
distribution is continued until the load converges.

Stremel (1982) attempted to describe the wake geometry
in greater detail, using Miller's two dimensional model with
a large number of filaments. However, he was unable to get

converged results for the wake geometry.
1.3 Scope of Current Research

This thesis extends the work of Stremel (1982) to

axisymmetric flows with curved vortex filaments (vortex
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rings), A naive application of the "cloud-in-cell" apprrach
to the axisymmetric potential equation is inadequate, as the
self-induced velocity of a ring 1is found to 6; dependent
upon the grid spacing and on the location of the ring
relative to the grid nodes. In order to correctly account
for the self-induced velocity, the scheme is modified to
more accurately determine the potential at points near a
vortex., The , incorrect self-induced velocity obtained from
the potential differencing is subtracted, and the correct
self-induced velocity added  explicitly, This approach
allows accurate calculation of the velocity of a ring whose
core size is smaller than the grid spacing, and eliminates
the grid dependence of the self-induced velocity.

With thi8 modification, the independence of the solu-
tion on the grid for unsteady flows with one and two vortex
rings .is demonstrated. One-step and two-step time integra-
tion schemes are used to calculate the motion of two
"leapfrogging” vortex rings.

Besides the calculation of unsteady vortex flows, the
calculation of the steady wake geometry of a two-~bladed
helicopter rotor in hover has been attempted wusing an
extension of the vortex ring model of Miller (1981).
Converged results are obtained using Miller's simplified
wake model with a few ring vortex markeré.' Difficulties in
acpieving converged results for wakes consisting of many

vortex rings are observed. This leads to the speculation
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, that a steady solution may not exist., However, definite
| conclusions cannot be drawn at this time.
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CHAPTER 2. VORTEX RING FLOWS
2.1 Outline of Approach

All flows considered in the present work are
axisymmetric with no swirl, i,e., the axial ' vorticity
component 1is everywhere zero. All the vorticity in the
field is considered concentrated into a finite number of
vortex rings, concentric about the axis of symmetry. The
vortices move under their mutual induction., The flow
everywhere outside the cores of the vortices is incompress-
ible and irrotational.

Since the motion of each vortex is tracked through
space, the method 1is Lagrangian in nature. However, the
velocity of each vortex is found by solving for the velocity
potential 1in the region surrounding the vortices at each
time level and interpolating the velocities to each vortex
location. This solution of the potential field eguation at
each time level is an Eulerian description of the flow,
Since the method combines both Eulerian and Lagrangian flow
descriptions, the method is termed Eulerian-Lagrangian
(Stremel 1982).

In this chapter, the model for the wunsteady flow
problem is developed. The "cloud-in-cell” solution proce-
dure is described, and it is shown how the scbeme.eliminates
the singular nature of the vortices in the Eulerian refer-

ence frame. In the results of Baker (1979) and Stremel
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(1982), the elimination of the singular nature of the point
vortices by the difference formulas was found to affect the
small scale features of the flow, but the large scale flow
structures were 1insensitive to the grid size. This was
interpreted as a grid dependent artificial viscosity, or
vortex core size (Murman & Stremel 1982),

However, in the axisymmetric flow case considered here,
grid effects are non-negligible, This is because a curved
vortex line induces a velocity on itself; whereas a straight
vortex line has no self-induced effect (Baichelor 1%67, p.
510). The self-induced velocity of a vortex ring is found

from the formula
{1 3R - J.}
W SqmR 1N a t (1)

wvhere R is the ring radius and a is the core radius of the
vortex (Lamb 1932, p.241). It 1is found that a straightfor-
ward adaptation of the "cloud-in-cell" approach described
above results in an effective core size, and hence velocity,

that is dependent upon grid spacing and on the location of a

vortex within a grid cell.
2.2 Unsteady Vortex Flow Model

The region R containing all the vortices is sghown in

| figure 1. Given an initial configuration of N vortex rings,

with circulations I, and positions (r;r2;), i =1 to N, the

—
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motion of the rings is given by the set of ordinary

differential equations,

\

g,
Jr‘ ) “' = . !
;-t. 2 L’L( , Jt W., ; (SR l hN- (2)

Here, r; and 2z, are the radial and axial coordinates of the
i-th ring, respectively, and u;, w;, are the corresponding
velocity components. Equations (2) are called the trajecto-
ry equations. |

If each vortex is a ring of infinitesimal thickness
coaxial with the r=0 axis, the incompressible, irrotational
flow outside the vortices may be described by'a velocity

potential, @, satisfying Laplace's equation,

Irt r or PY A (3)
The velocity at any point is given by
?-é - * .?;é -
- U / Dz- ‘ (4)

The potential is multiple-valued for circulatory flows,
and it is necessary to introduce branch cuts for each vortex
in order to maintz2in a single-valued potential. The poten-
tial is discontinuous across these cuts, but the velocity
and its derivatives are continuous. The position of the
branch cut for each vortex is the surface of the disk normal
to the symmecry axis and bounded by the vortex. The branch

conditions for the potential are given as

[T | R 1 (5a)
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V¢* 2 V¢' (5b)

for 1 = 1 o N, where [¢]. = @(r,z;) - &(r,z]) and V@t=
V@(r,2}).

The solution of equation (3) requires boundary condi-
tions on the surface bounding the domain R. On the axis of
symmetry, the condition of =zero radial velocity i
specified, while Dirichlet conditions are used on the outer
boundaries, The Dirichlet conditions are found by summing
the value of @ on the outer boundaries due to all the

vortices in the field. The boundary conditions are written
) ' (6a)
(6b)

To find the vortex velocities (u.,w.), it is necessary
to evaluate equations (4) at the vortex locations (r‘,zg).
Since these points are branch points, equations (4) are
undefined there, and it 1is necessary to eliminate the
singularity of the 1i-th vortex in order to solve for the
velodity due to ﬁhe remaining vortices. The self-induced
velocity " of the 1i-th vortex ring must then be édded
explicitly to the velocity due to the other vortices.

Once the vortex veiocities are found the positions at
the next time level are found by integrating the trajectory

equations (2).

2.3 Non-dimensional Variables
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For unsteady flows the following non-dimensional vari-

ables are used: 1
- (ref ’ Ret: . lrag 'Y t: %’to'
@: 7w A7) reRe, US4 U Teeg © 7
Pn‘ (7>

me NPty zsR2*. we ogR,w’
where the asterisks denote non-dimensionql variables, (1]
R and gy are a reference length and circulation, respec-
tively., For flows in which all the circulation 1is of one
sign, [, is taken as the total circulation, and R.; is the
radius of the centroid of vorticity.

In the remainder, of this chapter, only the
non-dimensional eguations will be used. The asterisks will

be dropped for convenience.

2.4 Numerical Solution

In order to solve the governing equation for the
potenti&l on the Eulerian finite difference grid, the
vorticity must be distributed to fixed points on the grid
from the vortex positions in the Lagrangian frame of
reference. This 1is done by adapting the "cloud-in-cell"’
approach of Christiansen (1973) and Baker (1879) to
axisymmetric flows. Both Christiansen and Baker solved the
streamfunction equation in two dimensions and redistributed
the vorticity to the grid nodes, Stremel (1982), in solving

the potential equation, found it more convenient to

{1] Note: A different non-dimensionalization scheme is used in

chapter 4.
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redistribute the vorticity to the centers of the grid cells.
In the current work, the vorticit' was distributed to grid
nodes as done by Christiansen and Baker. It 1is found that
this is as convenient as Stremel's approach, providing that
due care is taken at the branch cuts.

Following Christiansen and Bake:, the "cloud-in-cell"
approach consists of distributing the vorticity of each
vortex to the four nearest grid nodes by bilinear intérpola-
tion, or area weightiﬁg (figure 2), This conserves the
total circulation (and moment of wvorticity in two dimen-
sions). After all the vortices have been redistributed to
the grid, the branch cuts will lie along radial grid lines
(figure 3)., The jump in potential, [¢], across a cut due to
circulation rh“ located at grid point (j,k) is 4t!}¢ for all
points inside of (j,k), and zero for all points to the
outside. Point (j,k) is a branch point and the value of the
jump here due to I}¢ is taken as the mean of the jump on
either side, 1i.e. qu“. The total value of the jump at
any grid  point is found from summing the contributions due

to all the vortices lying outside that point. Hence,

J
$Bu = 2T Ty + 4T 2 faa (8)

where J 1is the outer radial boundary of the computatioﬁal
domain,

Finally, the value of the potential ® is undefined at

3
Y ®
-
T e T A A, D i . et b e P S -

R Ty .
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grid point 1lying on branch cuts. It is taken as the mean

value of @ on either side of the cut, i.e,

¢j~" ] 'z(%‘ ' ¢j..h), (9)

Thus,
¢‘-“,, Pt %695/'.& (10a)
Bi® Bju - 4 b9 (100)

Once the vorticity has been distributed to the grid,
the potential equation must be solved. To derive a finite
difference formula for the governing equation, consider the
annular control volume centered about the grid point (j,k)
(figure 4). From continuity the £flux of fluid acroés the

faces of the volume must be zero, or

::{i G-hdA (11a)
or
T dusiy

W g
” {w(r.z...,\ w(r, 2.»\}"‘-‘“‘“"!’ ” {" '«“('_j*.’!)"]’-*sU(']'-\oz)j 0‘!‘0,(11!:)

‘fj%

Dividing by 27 yields
Fioy ™ Tuvig

r'*w(".zn«b,,)fd" rW(’ 2y ) 1A ¢ IU(rx‘H..z)r.%d? f i U0, 2)el2 70, (11¢)
; b, ety |

The integrals may be approsimated as follows:

"f‘:ﬁl(f \\"d" ~ F‘ . ¢JJ\N ¢

. T (12a)
rw.( o ¢.:‘m &

" At drdr # B, = az A" (12b)
[ <
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faa = Pk ~ P
r,].wb ucrj"‘\ " ) dt = Fj""uk * j Ar J rj.‘"h a2 ( 12¢)

['L3 Ilh B

T, ¢
ik ™ )
- f V'j..ﬁbt(rj'.p‘,ﬂdt o '.l;“k = -'L'_-——i&'k r‘.llL (%4 f (12d)

Equation (l11) is approximated by

- —

FJ“‘%.“ + F;-Vt,k + F".k“IL + FJ'.kJL = O

Substituting (12) and (10) and dividing by r drdz yields

Bk o Lo TOET Y | B =P = 20k 1B
————J—;—L-" ik’ Fj- L3 ¢il L+ ¢"“ ¢“ e, (”J’oﬁcn'5¢]\k-i3 (13)

“—m

aryr ZAar (a€)* 2an

Equation (13) is the five-point centered difference approxi-
mation to the Laplace equation. This finite difference
operator is second order accurate at all points other than
those where vortex singularities are located, The right
hand side is non-zero across branch cuts to account for the
jump in the potential.

Boundary conditions on the computational domain are the
symmetry condition at r = 0, and Dirichlet conditions on the
three outer boundaries. The Dirichlet conditions are
satisfied by summing the velocities at the boundary points
due to all the vortices 1in the field and pérforming a
trapezoidal rule integration of the appropriate velocity
component around the outer boundaries to get the potential.

It 1is noted here that this boundary condition proce-
dute, ‘although straightforward, is not efficient. Baker
(1979) uses an approach where groups of vortices are treated
-as point vortices located at their respective centroids, for

the purposes of determining the velocities at the
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boundaries. Also, he only calculates the velocities at a
few boundary points and interpolates to the remaining
points., Other possibilities are to use an asymptotic
expression for the vortex ring potential, or some other
far-field approximation. However, in this thesis the effort
is directed toward adapting the "cloud-in-cell” method to
axisymmetric flows. An attempt to develop a more efficient
method for determining the boundary conditions has not been
made.

The solution to equation (13) can be found using one of
any number of standard technigues. As mentioned in section
1.2, the "cloud-in-cell” approach is quite efficient when a
fast Poisson solver 1is used solve the field eguation. A
fast solver has not been used here due to the ef£0r£ spent
in developing the method for axisymmetric flows, but it is
intended to incorporate one in the future. The present
calculations were performed using a SLOR method. Relaxation
sweeps were made in the radial direction, from the axis to
the outer‘boundary. |

The velocity at a grid point (j,k) is found from the

central difference expressions

¢'u.k ‘¢‘-ﬁk
Wi * (14a)
Bkt = Bk | ) ' '
Wik = 26z = m(f%}w ‘squ.h *Jiscﬁj;k-i\ (14b)

These formulas are ~second order accurate at all points

except vortex locations., However, these formulas can be
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applied at vortex positions, since ® and %@ have been
defined at grid nodes accoriiny to equations (8) through
(10), Hence the singular nature of the vortices has been
removed, and the use of equations’(14) results in finite
values for Uiw and W ik

Following the "cloud-in-cell" approach, the velocity at
vortex locations in the Lagrangian reference frame is then
found by using a bilinear interpolation of the velocities at
the four nearest grid points to each vortex location (figure
5).

The trajectory equations (2) are integrated using one

of two schemes, a forward Euler scheme,

e e s at(ul) ) (15a)
r A NS (15b)

or a modified Euler scheme (Baker 1979),

e L4 » r)

r:‘l - r‘" . %t' (u“ﬂ " ucﬁﬂl)

™ eane at (W)

Dot (16b)
zc '.. z‘: » T (w- ‘w‘a 2

The time step was originally determined using the

criterion of Baker (1979) and Stremel (1982),

Ar 42
st cm (i) o) (17)

However, 1later calculations with equations (16) were done

with larger, fixed time steps that were specified arbitrari-
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ly. No instabilities due to these larger time steps wvere

observed.

The computational scheme is diagrammed in figure 6,
2.5 Single Vortex Rings~~Results

Figure 7 shows the propagation of a single vortex ring
of unit radius and circulation using equations (13), (14),
(135), and (17). No self-induced velocity was explicitly
added. Note that the propagation speed is not constant, but
varies with the position of the vortex ring relative to grid
nodes. The speed is a maximum when the vortex is on a grid
node, and a minimum when half-way between twoc nodes.
Redistributing the vortex to an Eulerian grid results in an
effective core size that is on the order of the grid spacing
(Murman & Stremel 1982). The circulation of a vortex is the
integral of vorticity over the core cross-sectional area.
For a vortex located on a grid node, the vortex can be
thought of as having a uniform vorticity over the area of
the surrounding four grid cells, or 4drdz. Redistributing a
vortex from the Lagrangian frame to several grid nodes

spreads the vorticity over a larger area, yielding a larger

“effective core in the Bulerian frame of reference. This

provides and explanation of the wvariation in speed as the
vortex propogates through the grid.
The variation of the vortex speed with grid spacing is

shown in figure 8. The speed varies logarithmically with
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the grid size, Again, the wvariation in speed can be
interpreted as a variation in ef_ective core size, as seen
by equation (1),

These results show that the grid effects in

axisymmetric flow are of a different nature than in two

dimensions (Baker 1979, Stremel 1982), because of the
self-induced velocity of a curved vortex filament, A
further explanation of the source of the self-induced
velocity of a vortex ring in the current finite-difference
scheme can be made by examining the velocity of an isolated
vortex located on a grid point as calculated by formula
(14b), and ie shown schematically in figure 9, In the two

dimensional case (figure 9a), the grid lines are

~ isopotential 1lines; thus, the difference (¢ﬁ”'- ¢pbd is

independent of the grid spacing 4z, and when the branch cut
is taken into account, the resulting velocity 1is zero,
independent of the grid., However, with a vortex ring
(figure 9b), the difference (&, - $/w1) is nat independent
of the grid spacing Az; since the axial grid 1lines are no
longer isopotential lines, Thus‘even after accounting for
the branch cut, ﬁhe vortex velocity is non-zero, and varies
with 42.

In order to eliminate this grid dependent self-induced
effect, a local correction must be applied to botl the

governing equation and the 1local velocity correction. A
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method for correcting the self-induced velocity error of the

straightforward "cloud-in-cell" scheme is developed.
2,6 Local Correction Formula
2,6.1 Potential Eguation Correction

he difference formula for the potential 1is second
order'accurate at all points in the field other than vortex
locations., However, near a vortex, the truncation error,
although formally of second order, becomes large due to the
small radius of convergence of the Taylor series expansion
for @ at points near the vortex. In order to accurately
determine the potential at such points, a correction must.be
applied to the difference equation,

The correction term 1is derived by considering the
potential at a point in the field to consist of a global
value, P, containing the influences of all vortices in the
flow, and a local value, ¢', represen.ing the influences of
nearby vortices. If the difference formula for the
governing equation is derived from a control volume approach
as 1in chapter 2, the differences 1in @ are interpreted as

representing the fluid fluxes across the faces of the

control volume (figure 4). The correction to the difference

equation consists of better approximation of the fluxes due

to local influences.

Consider the flux across face (j,k+1/2). From equation

(12a), = . ¢ph| , e
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Recognizing that this approximation is poor for vortices
located within the control vzlum¢ or the surrounding area,
the local value of the potential due to these redistributed

vortices on the Eulerian frame is subtracted out, yielding

F ¢ - ¢4 Le . é 2]
- - Rty T ,j'l‘ - ('ﬁlﬂ i“‘ aAr ‘
rj.\d% "L_Qi—'—rjar 42 ‘:\A (18)

The value thais the approximate flux due ¢to all vortices
outside the local region. This .portion of the flux is
adequately represented by the difference formula (18).

Now- consider the value of the flux across face
(j,k+1/2) due to the local influences. This part of the
flux may be written as

T

F‘,Thm = ' [K w‘(r,‘i“)‘rdr
% where w! is the vertical‘ velocity due to local vortices.
: Adding this expression to (18), and performing similar

. operations on equations (12b-c),

oo =} B Bl
» - 'k . - 4
Flov * "“‘Mr ' rar - o Ll LN fw‘(r,z_,urdr (19a)

r.
J az d o

o et G

‘et ™ Pk VL B 1]
, P jwas, * ?"%TJ" fjer - S qar - [ whr g )reln  (19b)
3 kS
| ' ST B I e
El Brae B P - Bk 1
{ R MO - Ik T 4 o el (19¢
: Flo‘r“ﬂ Y I'"J-"‘.Az- ir r_p‘&bl' '{.‘.‘“ (Job. % ¢ ( )
’ 4 4 Zusy
; ¢ ik ¢:k - ¢‘--.h "¢'.h N 94
i ' "y

Adding (19a) through (19b) and setting the sum egual to zero

gives the resulting finite difference eguation:
= 4
P = T cam (I bidin) - dee (Bl - £l )

riev, ' &g,
o S 2 [ == 1 (20)
] r - “r. .U .
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This eguation is more accurate than equation (12) for points .

! and u' can be found

near a vortex. The values for @*, w
by any convenient mgthod., In this thesis, an approximate
formula for the velocity near a curved vortex due to
Widnall, et.al, (1971) is used. Consider coordinates (0}0)
attached to the vortex as shown in figure 10. The radial
and axial velocities around the vortex in the limit as e =

0 are, respectively,

T 5in® R '
oo W T ) (21a)
R _C’_ '
N CMO In ¢ e (21b)

Integrating (21) yields the local potential
' Quhd ?R _ }
ple-r{ T -26 (22)

for -7<@<T. This gives the correct jump in @ across the
branch cut. These expressions for éf and the local
velocities were used 1in equation (20). Again, the local
values are those due to the redistributed vortices 1in the
Eulerian reference frame, not the vortices in the Lagrangian
frame. The flux integralQ on the right hand side of
equation (ZQ) were solved analytically.

‘Note that the extent of the local field can be chosen
to be any size. There is a trade-off between accuracy and
efficiency. The larger the local field, the larger the
number of grid points at which corrections must be made,

meaning more cpu time. In this thesis the local field of a
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vortex was chosen to extend only to the 8 nearest grid
points. The fluxes were correcced on the twelve control
volume faces as shown in figure' 11. This was chosen in the
interest of computational .efficiency and due to the limits

of accuracy of formulas (21) and (22).
2.6,2 Local Velocity Correction

The correction to formulas (14) for the velocity are
found by once again noting that the formal accuracy of (14)
breaks down at or near vortex locations. The approach is
similar to that for the potential eguation correction,
namely removing the local influences from ¢ and explicitly
adding the correct self-induced velocity. o

Consider the i-th vortex, located within the grid cell
with lower left hand corner (j,k) (figure 12). To get the
velocity at (r;,z;), the values of u and w at the four
corners of the cell must be corrected by subtracting the
values of @' and 99* due to the local influences from
equation (14). This yields

'

2 2
Bjum = B B =Pk

J\j,k = 2ar T 2ar / (23a)
b e = ¢.l"‘“ ¢‘.\m ‘¢1ft_\ LA w il -4g€) . L
Win ® = i vy A1 %‘“‘S%‘\‘)‘*‘(sﬁk o+ '(b%;-@“i\?j( 23b)

Eqﬁations (23) represent the welocity induced at grid point
(j k) due to all other than local influences. The velocity
at the vortex i is found by bilinear interpolation of the

velocities found by (23) at the four surrounding grid
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points. The local velocity field, including the correct
self~induced velocity of the i-th vortex, is then explicitly
added.

Once again, the extent of the local field can be chosen
as any size. In this thesis, the only corrections made to
the velocity of each vortex is to its self-induced velocity.

The values of ¢' in (23) are found for the four

redistributed vortices representing the i-th vortex on the

Bulerian grid, using formula (22). The correct self-induced
velocity is found from the formula (1), wheré the value of
the core radius is specified independently of the grid
spacing.

If it 1is desired, it 1is possible to include other
nearby vortices in the local potential in equation (23).
Then local vortex-to-vortex interactions may be treated
using the Biot-Savart law, for example. Again, there is a
trade-off between computational efficiency and accuracy.
For the current work, it was considered sufficient to
correct only for the self-induced velocity in order to

demonstrate the method.
2.7 Results Using Modified Equations
2.7.1 Single Vortex Rings

With the corrected equations (20), (23), and a

self-induced velocity added according to equation (24), the

‘velocity of the is now independent of the grid (figqure 13),
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The core size a in figure 13 is that specified in eguation
1, and is a parameter specified independentiy of the grid
spacing. Note that the grid dependence of the vortex

velocity is completely eliminated.
2.7.2 Two Vortex Rings

The improved scheme was used to calculate the motion of
two vortex rings of equal circulation, It is well known
that two coaxial vortex rings with circulation of the same
sign will pass through one another, producing a "leapfrog"
motion. Several cases were tried, using different initial
separations and core sizes. 1In each case the circulation of
each ring was non-dimensionalized by the total circulation,
and lengths were non-dimensionalized by the radius of the
vortex centroid, "

R, = (éf’e'f\/féﬂ\
which is an invariant of the motion,

Figure 14 show the trajectories of the rings for three
different core sizes and equal initial separations. The
core size of each ring was not constant, but ;aried such
that the volume of the ring was constant,.i.e.

r:al = constant
The core radii in the three cases are 0.1, 0.05, and 0.01
(these values refer to the core radii for a ring of unit
radius). The forward Euler scheme with a fixed time step of

0.00625 was used. The initial separation in each case was
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0.4517, and the grid spacing was &r = Az = 0,05,

Figqures 15 and 16 show the ring radii and vertical
position as functions of time for the three cases, Note
that the half-period of the motion is independent of the
core size, and that the calculated centroid radius is
constant, Alsc note in figure 16 that the speed of the
centroid is not constant, but is maximum when the rings are
of equal radii and minimum when the rings lie in the same
plane.. | _

Figure 17 show the trajectory for the leapfrogging
rings when the initial separation is varied. The core size
was fixed at 0.1 for the ring of unit . radius. The time
integration and grid parameters are as before for the larger
separation (figure 17a), but the time step is 0.0025 for the
smalier separation (figure 17b). Note the interesting
motion of the latter configuration: the outer ring actually
has a net upward velocity when the rings lie in the same
plane. The rings trace a "loop-the-loop" pa;h as they
translate. For the larger 1initial separation, the calcula-
tions were not carried to a half-period due to the time
involved. 1Indeed, for such a large separation, the motion
may not be periodic, but the rings may simply increase their
separation until it becomes infinite (Hicks 1922).

In figures 18 and 19, the time histories of the motions
are shown. Note that the period increased with increasing

initial separation.
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Examination of the plots of radius vs. time in each
case shows that when the planes (f the rings coincide after
the start of the motion, the separation of the rings’is
greater than the initial separation. (This 1is clearest in
figure 18b). This is due to the fact that the forward Euler
time integration is only first order accurate. (This is the
reason a smaller time step was chosen for the minimum
separation case.) The use of the modified Euler scheme,
equations (16), which 1is second order accurate alleviates
this problem, Figure 20 shows the results of the case of
figures 17-19b, using a time step of 0.00625. The accuracy
is much better, even with the larger time step. Also, the
ability to uée larger time steps means that the cpu time for
the scheme can be less for the same accuracy, despite the
need to solve the potential eguation twice <for each time

level.
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CHAPTER 3. HELICOPTER WAKE APPLICATIONS

3.1 Rotor Wake Model

k]

For hovering rotor flows, the unsteady problem of
determining the wake configuration becomes a steady problem
when observed in rotating coordinates attached to the blade
(figure 21). The problem in blade coordinates becomes one
of determining the force-free vortex locations in an
azimuthal plane behind the rotor blade.

The trailing vorticity from each rotor blade is
discretized into N filaments. These filaments follow heli-
cal paths below the blade,. However, the helix angles of
these filaments are small, and the effect of the filament
inclination on the induced velocities in an azimuthal plane
are second order (Miller 1981). The helical filaments can
then be replaced by vortex rings concentric about the axis
of rotation of the rotor. Each ring under the blade
represents the contribution of two half-spirals, one from
each blade (figure 22). The ring at the blade plane
represeiits the portion of each spiral from ¢ = 0 to /2 from
each blade, where ¥ is the azimuth angle.  Since the
velocity induced in "'the computational plane by these seg-
ments is only half that of a complete ring, their influence
is represented by treating the segments as a complete ring
but with only half the total circulation of the blade. 1If

the bound vorticity of the blade 1is neglected, which is
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again accurate %o first order (Miller 1981), the flow is now
axisymmetric. The neglect of azimuthal variations in the
flow beneath a rotor 1is analogous to the assumption of
two-dimensional flow in the Trefftz plane when computing the
roll-up of vortex sheets shed from conventional wings
(Stremel 1982). (Liu, et, al. (1983) also wuse this
assumbtion in their Navier-Stokes solution of a rotor wake.)

The solution of the wake geometry is determined in the
azimuthal plane just behind the blade. The positions of the
trailing vortices attached to the blade are held fixed.
Below the blade, there are up to four wakes whose positions
correspond to the location of the blade trailing wake every
half revolution. The attached wake and the four following
wakes are collectively known as the intermediate wake. The
position of the vortices in the intermediate wake are solvéd
for in the computational domain (figure 23). The velocities
of the intermediate wake vortices are found by solving
equations (3) through (6) as described for the unsteady flow
case,

After the fourth wake below the blade, it 1is assumed
that the wake no 1longer contracts, The point vortices
representing the blade are assumed to roll-up into two
distinct vortices, a tip vortex and a center vortex. . The
radial positions of these vortices are found from calculat-
ing the centroid of those vortices making up the tip and the

center vortices in the fourth intermediate wake. The
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roll-up is determined by the Betz model for voll-up as used
by Miller (Miller 1981, Stremel 1982). The verticel spacing
between these vortices in the far wake is fixed, and is
determined from the spaging between the rolied-up vortices
in last two sheets of the intermediate wake. The vortices
are then placed in fixed positions wunder the intermediate
wake, Ten tip and center vortices each are used to
represent the initial portion. of the far wake. Some
intermediate wake vortices lie within the computational
domain, However, the wake lies primarily outside the domain
(figure 23) and contributes only to the boundary conditions.

Beyond the rolled-up vortices, the remaining wake to z
- =00 ig represented by two semi~infinite¢ vortey gylinders,
corresponding to the ¢tip and center vortices, located one
far wake spacing below the last two wvortices of the far
wake, The strength (df/dz) of each vortex cylinder is
determined by the strength and spacing of the corresponding

vortices in the far wake, and is given by

e O |
3w T, (24)

where 4z,  is the spacing between tip or center vortices in
the far wake, and " is the circulation of the tip or center
vortex. The two vorte* cylinders lie entirely outside the
computational domain and contribute only to the boundary

conditions.

The object of the rotary wing calculations is to find
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the configuration of vortices that exists in force free
equilibruim below the rotor blade plane. Given a
distribution of bound circulation on the blade, an initial
wake geometry is assumed, From this assumed configuration,
the velocity of the filament is integrated along the helical
path described by the filament (fiéure 24). The trajectory

eqguations for the i-th vortex filament is

dr; T dn  redy (25)

where v is the azimuthal velocity and ¢ is the azimuth angle
behind the blade. Since there are no perturbations in the
azimuth direéction, v 1is equal to QAr, where O 1is the
rotational speed of the rotor. The integration is carried
cut over one half revolution of the rotor '(for the
two-bladed helicopter rotors considered here) and the inter-
section of the filament in the computational plane is
determined. This calculated position of the filament will
in general be different from the assumed, original position,
The new position of the vortex is taken as a proportion of
the difference between the original and calculated posi-
tions. The vortex trajectory integration is then repeated
for the new wake geometry, until the vortex positions have
converged.

For rotary wing flows, the variables are

non-dimensionalized as follows:
¢=_ﬂ.‘R1¢‘ ) r =Re? ; u=0Ru?;
P=qR M, Z2 =TRaz* w2 ARw* (26)
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where R is the rotor radius, and . is the rotational speed
of the rotor.

In the remainder of this chapter, only the
non-dimensional equations will be used., The asterisks on
the dimgﬁsionless variables will be dropped for convenience,

The numerical procedure to solve for the velocities of
the vortices in the intermediate wake is the same as for the
unsteady flows described in chapters 2 and 3. The boundary
conditions are satisfied by summing the velocities on the
boundaries due to the vortices of the intermediate wake and
the far wake, including those far wake vortices lying
outside the computational domain, and integrating to get the
potential. The contribution of the vortex cylinders to the
boundary conditions is found by using an approximate formula
for the potential of a semi-infinite vortex cylinder due to
Scully (1975),

| L oal (—__———.—.—-:‘J:::..—-

R T ercz-z‘,o‘) (27)
where Zegl is the position of " the top of the cylinder. Frog
an assumed iditial configuration of vortices in the
computational plane the vortex trajectories are integrated
and the wake geometry updated until it converges.

The position of the vortices in the computational plane
represent the intersection of the trailing vortex filaments
from a blade every half revolution, for the two-bladed

rotors considered here. If N vortices are used to represent
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the trailing vorticity from a blade, then the position of

the i-th vortex corresponds ¢t~ the intersection of the

A 0 A

(i-N)th vortex with the plane, one half revolution later ,

r ¥

(figure 25), To update the vortex positions, the trajectory '
equations (25) are integrated over half a blade revolution, .
taking the velocity to be the mean of the velocity at

locations (r,,z ) and (r Thus the provisional new

vt Ziag) o

vortex coordinates are

was used for © in the current calculations. 7

Foroe mn, & BRuEeul) (28a)
g 3™ ez ¢ RN WA ) (28b)
g where the superscripts denote the ‘teration level, and 4 is :
E the angle between the blade, and is equal to 7 for a ;
5 two-bladed rotor. g,
5 The values F} and 27" are provisional values of the g,
3 vortex position. The eguations are not well-conditioned and %
E the calculations must be under-relaxed in order to get g
converged results. The vortex positions at iteration level é
%. n+l are i
¥ P el s (R - (29a)
E z':." 2] T (i:" . Z:\ (29b)
: where « is the under-relaxation parameter. A value of 0,2 o

L thr interest of speeding convergence of the wake

]
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geometry, the SLOR solution of equation (20) was run to
convergence only for the first two wake iterations. After
that, the number of SLOR relaxation sweeps was restricted in
order to speed the convergence of the wake.

The computational scheme is diagrammed in figure 26.
3.2 Rotor Wake Flow Solutions

The solution for the wake geometry of a two-bladed
helicopter in hover has been attempted. The distributidn of
bound circulation on the blade was taken from Miller (1981),
using the distribution formulas of Stremel (1982). The
bound circulation distribution is shown in figure (27). The
initial spacing between the four vortex sheets in the
intermediate wake was estimated from momentum theory, which

gives
c, = 2\ (30)

where C, is the thrust coeffic’ent, taken as 0.00452, and A
is the axial velocity in the wake, w/QR.

Solutions for the wake geometry were attempted using
the simplified wake model of Miller (1981) as well as a more
detailed model, representing the intermediate wake with a
large number of vortices. The downwash at the blade has
also been calculated for each case. This 1is done by
subtracting from the downwash the influence of those inter-

mediate wake‘vortices located in the blade plane. The blade
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attached wak is then represented by a series of
semi-infinite vortex lines and 1is called the near wake
(Miller 1981), The downwash due to the near wake is added
to the velocities induced by the wake beneath the blade.
Unlike Miller, the calculated downwash is not wused to
' re~calculate the blade loading, but is merely used to

compare results,
3.2,1 Simplified Model

Using Stremel's load distribution formula, the
intrmediate wake was assumed to be rolled-up into two
distinct vortices: a tip vortex which consisted of all the
circulation from the peak blade loading at 0.9R to the tip,
and a center.vortex, consisting of the vorticity rolled-up
from 0.25R to 0.9R. The root vortex (from O0.1R tec 0.25R)
was included initially, but it was found to cause
computational difficulties; following Miller (1981), it was
ignored. The initial configuration is shown in figure 28,

The wake geometries and downwash at the blade for
. vortex core sizes of 0.01, 0.025, and 0.05 are shown in
figures 29-31 after 150 iterations. The grid spacing was
or=42=0,025 on a 51x67 grid. The results were well
converged after about 100 iterations. The differences in
the tip vortex positions are slight, with the results for
the larger cores being closer to the blade, due to their

smaller self-induced velocities. The results compare qﬁite
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well with the results of Miller (1981). The differences
demonstrate the ability of the present method to calculate
the self-induced velocity of a vortex independently of the
grid features., Also shown are measured vortex positions
(Miller 1581). The agreement is seen to be goed.

Comparing the downwash over thé central portion of the
blade, it is seen that the downwash is greater (i.e., more
negative) the larger the core size. This is due to the
greater proximity to the blade of the larger tip vortex.
However, the differences are‘slight Aamong the three cases.

Runs performed on grids ccarser grids (Ar=Az=0,05 and
0.1) are shown 1in figures 32 and 33 for a core size of
0.025. The differences in the vortex locations are slight,
vith the downwash being virtually identical in each case.

All these cases have been run on the Multics system,
The cpu requirements for the calculations on the finest grid
(ar=A2=0.025) were approximately 8 minutes for 150 wake
geometry iterations. Convergence on the coarser grids
(Ar=42=0.05 and 0.1) was obtained in about 100 iteration,

and required 2 minutes and 1 mihute, respectively.
3.2.2 Detailed Wake Model

It was desired to determine the effect of increasing
the number of vortices used to represent the intermediate
wake. Runs were performed using 5, 10, 21, and 42 vortices

to represent the blade trailing vorticity. All runs were
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performed on a grid of ar=4z=0.025 and a vortex core size of
0.025. The core size was chosen based on Miller's (1981)
recommendation. The grid spacing was chosen on the basis of
brovidiﬁg good ;esolution of 1interactions among nearby
vortices, suggesting a spacing of the order of the core
size. The root vorticity from .1R to .25R was neglected to
prevent convergence difficulties.

When five vortices were used to represent the blade
trailing vorticity (a tip vortex and four vortices represent
the inner portion of the blade) very good converged results
were achieved (figure 34). Tip vortex positions agreed well
with those calculated using Miller's simplified model,
Convergence was achieved at approximately 150 iterations.
Note that the tip vortex is moving at approximately half the
velocity of the edge of the inner vortex sheet. This is as
expected, if the tip vortex is considered to be the edge of
a cylindrical shear layer. The edge of the shear layer
moves at the mean ¢f the outer and inner velocities.-

Comparison of the downwash to the two vortex case shows
small differences. The shape of the downwash distribution
is somewhat flatter than that ¢f the simplified model due to
the less concentrated vorticity in the central portion of
the intermediate wake.

Calculations using ten vortices to represent the
trailing vorticity in the intermediate wake are shown in

figure 35, One vortex represents the tip vortex while nine
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vortices make~up the inner portion of the blade wake.
Again, these results are well converged. Comparison of the
downwash in figure 35 to that in figure 34 shows no
differences. This suggests that the details of the repre-
sentation of the inner part of the wake are not critical to
the calculation of the wake geometry and downwash.

When the wake was represented by twenty-one vortices (a

tip vortex plus twenty on the inner portion of the blade),

results did.not converge, An iteration history is shown in
figure 36. Note that some o¢f the vortices from the older
(i.e., lowermost) portion of the wake are being swept-up
near to the tip vortex closest the blade. Examination of
thé downwash iteration history also illustrates the lack of
convergence of that quantity as well.

Increasing the number of vortices to 42 trailing
filaments, the results are even more chaotic (figuré 37).
The radial location and strengths of £he vortices
representing the blade trailing vorticity are shown in table
1. Also, in this case, the vortex core size for each vortex
has been chosen to be 0.01, so that the vortices do not
initially overlap. The root vorticity has been neglected
from 0.1R to 0.17R. The tip vorticity is now contained in
the five outboard vortex markers of the blade, rather than
one distinct tip vortex. However, rather than rolling up

into a series of distinct tip vortices, the markers are

pulled apart. A few vortices from the older portions of the
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wake can be seen to be drawn into the tip vortex nearest the
blade. These markers seem o be¢ oscillating slowly up and
down as the iteration count continues. Als¢, chaotic
behavior in the lowest portion of the intermediate wake is
apparent with the larger number of vortex markers,

Representative run times on Multics for the 5, 21, and
42 vortex cases were approximately 10 minutes, 23 minutes,
ana; 32 minutes, ;espectively. The cost of increasing the
number of vortex markers in the flow aées not increase as
N',‘ as it does with Biot-Savart methods. Note also that
these calculations were performed without a fast Poisson
solver. Using a fast solver to replace the SLOR algorithm
should reduce the run times considerably.

It is clear from the results that with an increasing
number of vortices representing the intermediate wake, the
wake becomes unstable. Although it 1is not clear what the
instability is due to, it 1is suspected that it may be
physical. Experimental results (Landgrebe 1871) show an
instability in the fourth occurrance of the tip vortex below
the blade. The results in figure 37 show the vortex motions
apparently becoming more chaotic in the "older porticns of
the wake. However, it 1is possible that the stability
problems may be numerical and arise from the representation
of a continuous vofticity distribution by discrete vortex
filaments. As described in section 1.2, discrete vortex

representations of trailing vortex sheets have reguired
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various ad hoc fixes to obtain a smooth roll-up, and it is
not clear that continuous vorticity distributions can be
represented by discrete vortices (Saffman & Baker 1979).

Further evidence of the possible numerical nature of
the instability results from noting that convergence can be
acheived with a coarser grid. In figure 38, the case of
figure 37 has been re-run with a grid size of Ar=Az=0,(05.
In this instance, the wake geometry did converge. Compari-
son of the downwash at the blade shows good agreement with
the results of figures 34 and 35. In this case the larger
grid size results in "smearing-out” of the velocity fields
of nearby vortices. Although the self-induced velocity of
each vortex is correcfly determined, interactions of nearby
vortices are not corrected for, and thus show a grid
dependenée. On a fine grid, with better resolution of the
vortex-to-vortex interactions, the discrete structure of the
vorticity distribution is more apparent. This suggests that
the more distributed the vorticity distribution, as ;esolvgd
by the numerical scheme, the more stable the flow.

. It is also felt that the iterative approach to finding

_the wake geometry, in which a steady solution is assumed to

exist, may be ill-posed and fail to have a solution. A more-

correct formulation may be a time-dependent problem which

may or may not have a steady solution.
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CHAPTER 4. CONCLUSIONS

A method for calculating axisymmetric vortex flows
using an Bulerian-Lagrangian ¢flow description has been
described. A straightforward adapﬁation of the
"cloud-in-cel;" approach as used by Stremel (1982) for two
dimensional flows is inadequate due to the grid dependent
self-induced velocity. A modification to the
"cloud-in-cell" scheme to eliminate the grid effect and add
the correct self-induced velocity of the vortex rings has
been described, and has been demonstrated in the calculation
of the motion of a single vortex ring., The metion of two
"leapfrogging"” vortex rings has also been calculated, and
the calculation of the wake geometry of a helicopter rotor
in hover has been‘attempted. Converged results 'for the wake
geometry have been achieved only for a few cases.

In comparing the current method to Biot-Savart vortex
methods, the advantage of the "cloud-in-cell" approach is
its ability to handle large numbers of vortices more
efficiently than Biot-Savart methods. The current method
has allowed the helicopter wake model of Miller (1981) to be
extended to handle large numbers of vortices. The disadvan-
tage of the current approach when compared to
two-dimensional "cloud-in-cell" schemes is the need for a
local correction in order to eliminate the grid dependence
of the self-induced velocity. The extra overhead required

for the local correction terms increases computational time,
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meaning a trade-off must be made between accuracy and
efficiency when determining the extent of the local correc-
tion field. Also, the development of the helicopter wake
calculations to handle large numbers of vortices has led to
convergence problems. The instability of the rotor wake has
been observed experimentally and may be the reason calculat-
ed results have not converged., However, it is not yet clear
that the representation of the wake as discrete vortices is
capable of accurately modeling a continuous vorticity
distribution., Also, it 1is not clear that an iterative
procedure in which a steady solution is assumed is a
properly posed problem,

Further developments of th:y method could include such

techniques as multigrid and embedded meshs to better resolve *

the vortical regions of the flow. Such approaches may allow
further understanding of the nature of the observed
instabilities in the present calculations. Also, the incor-
poration of a fast Poisson solver to solve the potential
equation should considerably improve the speed of the
calculations,

A final note must be made of the fact that the core
size of the vortices representing the intermediate wake is
chosen arbitrarily. No model tor the core size is available
at this time, and it is unknown what constitutes the correct
choice for the core size,v If free wake analyses. are éo

become useful. it is necessary that an understanding of the
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relationship between vortex core size and the physics of the

flow be developed.
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Table 1, Blade Trailing Vortex Strengths For ‘
Case Illustrated In Figure 37
Circulation Radius L
* |
. -0.00090 0.17000
-0.00077 0.19000
-0.00068 0.21000
-0.00061 0.23000
-0.00055 0.25000
-0.00050 0.27000 :
-=0.00046 0.29000
=0.00043 0.31000
=-0.00039 0.33000
-0.00036 0.35000
-0.00034 0.37000
-0.00031 U.39000
=-0.00029 0.41000
-0.00027 0.43000
: =0.00025 0.45000
: =0.00023 0.47000 |
= -0.00021 0.459000 .
=-0.,00020 0.51000 i
3 -0.00018 0.53000 :
3 -0.00017 0.55000 }
: -0,00014 0.59000 P
’ -0.00012 0.61000 il
% -0.00011 0.63000 .
. -0.00010 0.65000 o
; -0.00008 0.67000 oo
§ =0.00007 0.69000 -
z -0.00006 0.71000 P
i -0.00004 0.73000 P
” -0.00003 0.75000 o
“Q.00002 0.77000 o
Y -0000001 0.79000 !
) -0.00071 0.81000 ;
5 -0.00201 0.85000 !
3 -0.00169 0.87000 |
§ ~0.00071 0.89000
) 0.00030 0.91000 |
: 0.00094 0.93000 -
§ '0.00180 0.95000 -
0.00331 0.97000 o
0.01565 "0.99000 o
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